

MEMORIAL DE CÁLCULO DE BLINDAGEM

SALA DE RAIO X

Fundo Municipal de Saúde Bombinhas, SC – UPA

quinta-feira, 9 de novembro de 2017 RXSul Proteção Radiológica Curitiba, PR rxsul.med.br

Sumário

01-	Dados da Empresa	. 03
02-	Descrição do Equipamento	. 03
03-	Métodos Algébricos	. 04
04-	Classifcação de Áreas Adjacentes	. 05
05-	Dados e Equações	. 05
06-	Resultados	. 05
07-	Conclusão	. 06
08-	Considerações	. 07
09-	Anexos	. 08

MEMORIAL DE CÁLCULO DE BLINDAGEM

01- Dados Da Empresa

Nome UPA – Policlínica Municipal José Olímpio

Razão social Município de Bombinhas

CNPJ/CPF 95.815.379/0001-02

Logradouro Av. Falcão, nº 755

Bairro José Amândio

Cidade, UF BOMBINHAS – SANTA CATARINA

CEP 88.215-000

E-mail

Telefone (47) 3369.1517

02- Descrição Do Equipamento

Sala 01-RAIOS X

Marca PHILIPS

Modelo DR COMPACT

Corrente anódica máxima 800 mA

Tensão máxima 150 Kv

Carga de trabalho semanal máxima (W) 235 (mA.min.paciente⁻¹):

Pacientes estimados por semana 50

03- Métodos Algébricos

Para outros métodos como: o modelo de Archer, método de múltiplos tubos e cálculo seguindo a NCRP 49, nota-se a aceitável utilização das equações a seguir:

$$w = \frac{Q.N_{p}.N_{ex}.d}{60} \text{ (mA.min.semana}^{-1}) \text{ (01)}$$

$$N_{kf} = \frac{\ln(1/k_{f})}{\ln(2)} \text{ (08)}$$

$$k_{p} = \frac{P.d^{2}}{w.T.U} \text{ (02)}$$

$$E_{t} = F. N_{ks} \text{ (09)}$$

$$E_{t} = F. N_{kf} \text{ (10)}$$

$$E_{t} = F. N_{kp} \text{ (04)}$$

$$K_{s} = \frac{10^{3}.P.d^{2}}{w.T} \text{ (05)}$$

$$X_{pri} = \frac{1}{\alpha\gamma} \ln \left[\frac{\left(\frac{NTK_{p}^{1}}{Pd_{pri}^{2}}\right)^{\gamma} + \frac{\beta}{\alpha}}{1 + \frac{\beta}{\alpha}} \right] \text{ (11)}$$

$$K_{f} = \frac{60.P.d^{2}.i_{max}}{w.T} \qquad \text{ (06)}$$

$$X_{sec} = \frac{1}{\alpha\gamma} \ln \left[\frac{\left(\frac{NTK_{p}^{1}}{Pd_{sec}^{2}}\right)^{\gamma} + \frac{\beta}{\alpha}}{1 + \frac{\beta}{\alpha}} \right] \text{ (12)}$$

$$N_{ks} = \frac{\ln(1/k_{s})}{\ln(2)} \text{ (07)}$$

04- Classificação De Áreas Adjacentes

PONTOS	BARREIRAS	LOCAL	CLASSIFICAÇÃO
P1	Parede	Instalação sanitária	Área Controlada
P2	Parede	Circulação	Área Livre
Р3	Parede	Circulação	Área Livre
P4	Parede	Circulação	Área Livre
P4*	Parede	Bucky Mural	Área Livre
P01	Porta	Instalação sanitária	Área Controlada
P02	Porta	Câmara Escura	Área Controlada
P03	Porta	Circulação	Área Livre
Visor	Visor	Comando	Área Controlada
Comando	Parede	Comando	Área Controlada

05- Dados e Equações

PONTOS	Distância (m)	Fator Ocupação	Fator de Uso (U)	Restrição de dose
		(T)		(em mSv/sem) (P)
P1	3,45	1/16	0	0,10
P2	1,75	1/4	0	0,01
Р3	1,50	1/4	0	0,01
P4	1,75	1/4	0	0,01
P4*	1,75	1/4	1	0,01
P01	3,45	1/16	0	0,10
P02	3,40	1/4	0	0,10
P03	3,05	1/4	0	0,01
Visor	1,55	1	0	0,10
Comando	1,55	1	0	0,10

06- Resultados

Barreira	K _p (mGy.sem ⁻¹)	Fator	X _{barreira} (mm)	Material
Primária		Transmissão		
P4*	18,776	1,9E-03	1,29	Chumbo (Pb)

Barreiras	K _p (mGy.sem ⁻¹)	Fator	X _{barreira} (mm)	Material
Secundárias		Transmissão		
P1	0,143	9,8E+00	-0,07	Chumbo (Pb)
P2	0,555	6,3E-02	0,30	Chumbo (Pb)
Р3	0,756	4,6E-02	0,36	Chumbo (Pb)
P4	0,555	6,3E-02	0,30	Chumbo (Pb)
P01	0,143	9,8E+00	-0,07	Chumbo (Pb)
P02	0,147	2,4E+00	-0,04	Chumbo (Pb)
P03	0,183	1,9E-01	-0,13	Chumbo (Pb)
Visor	0,708	1,2E-01	1,03	Equivalente Pb
Comando	0,708	1,2E-01	0,19	Chumbo (Pb)

07- Conclusão

Levando em consideração as equivalências abaixo citadas tomando cuidado com o *range* das energias utilizadas pela clínica/hospital, as tabelas 8 e 9 expõem as espessuras e o material a serem utilizados para a blindagem de cada parede, porta ou visor. Como se trata de salas adjacentes a terceiros, os valores foram superestimados. A blindagem do teto e piso são inerentes.

Espessura	Material	Equivalência	Espessura	Material
10cm	Alvenaria		0,8cm	ArgamassaBaritada
0,4mm	Chumbo		2,4cm	Concreto
1,0mm	Chumbo		1,0cm	Barita

Ponto	Espessura (mm)	Material
P1	Nada a Acrescentar	
P2	0,30	Chumbo (Pb)
Р3	0,40	Chumbo (Pb)
P4 (*)	0,50	Chumbo (Pb)
P01	Nada a acrescentar	Chumbo (Pb)
P02	Nada a acrescentar	Chumbo (Pb)
P03	0,20	Chumbo (Pb)
Visor	0,25	
Comando	0,20	Chumbo (Pb)

(*) O Bucky para tórax equivale a 0,85mm de chumbo que foi descontado na conclusão final.

As densidades consideradas para esses cálculos são 2,4 g/cm₃, 3,2 g/cm₃, 11,34 g/cm₃ para o concreto, a argamassa baritada e a manta de chumbo respectivamente.

Jorge Luis Pinto - Físico Médico

CPF: 449.415.280-34 - Telefone: (41) 98412 2551

TABLE C.1—Fitting parameters of the broad-beam secondary transmission to Equation A.2 (thickness x is input in millimeters).

d of the state of the		Lead			Concrete		Gypsum		Wallboard
Workload Distribution	$\alpha (mm^{-1})$	$\beta(\mathrm{mm}^{-1})$	γ	$\alpha(\mathrm{mm}^{-1})$	β (mm ⁻¹)	γ	$\alpha (\mathrm{mm}^{-1})$	$\beta(\mathrm{mm}^{-1})$	7
30 kVp	3.879×10^{1}	1.800×10^{2}	3.560×10^{-1}	3.174×10^{-1}	1.725	3.705×10^{-1}	1.198×10^{-1}	7.137×10^{-1}	3.703×10^{-1}
50 kVp	8.801	2.728×10^{1}	2.957×10^{-1}	9.030×10^{-2}	1.712×10^{-1}	2.324×10^{-1}	3.880×10^{-2}	8.730×10^{-2}	5.105×10^{-1}
$70~\mathrm{kVp}$	5.369	2.349×10^{1}	5.883×10^{-1}	5.090×10^{-2}	1.697×10^{-1}	3.849×10^{-1}	2.300×10^{-2}	7.160×10^{-2}	7.300×10^{-1}
$100 \mathrm{kVp}$	2.507	1.533×10^{1}	9.124×10^{-1}	3.950×10^{-2}	8.440×10^{-2}	5.191×10^{-1}	1.470×10^{-2}	4.000×10^{-2}	9.752×10^{-1}
125 kVp	2.233	7.888	7.295×10^{-1}	3.510×10^{-2}	6.600×10^{-2}	7.832×10^{-1}	1.200×10^{-2}	2.670×10^{-2}	1.079
$150 \mathrm{kVp}$	1.791	5.478	5.678×10^{-1}	3.240×10^{-2}	7.750×10^{-2}	1.566	$1.040\!\times\!10^{-2}$	2.020×10^{-2}	1.135
Rad Room (all barriers)	2.298	1.738×10^{1}	6.193×10^{-1}	3.610×10^{-2}	1.433×10^{-1}	5.600×10^{-1}	1.380×10^{-2}	5.700×10^{-2}	7.937×10^{-1}
Rad Room (chest bucky)	2.256	1.380×10^{1}	8.837×10^{-1}	3.560×10^{-2}	1.079×10^{-1}	7.705×10^{-1}	1.270×10^{-2}	4.450×10^{-2}	1.049
Rad Room (floor or other barriers)	2.513	1.734×10^{1}	4.994×10^{-1}	3.920×10^{-2}	1.464×10^{-1}	4.486×10^{-1}	1.640×10^{-2}	6.080×10^{-2}	7.472×10^{-1}
Fluoroscopy Tube (R&F room)	2.322	1.291×10^{1}	7.575×10^{-1}	$3.630 \times 10^{-2} 9.360 \times 10^{-2}$	9.360×10^{-2}	$5.955\times10^{-1} 1.330\times10^{-2}$		4.100×10^{-2}	9.566×10^{-1}
Rad Tube (R&F room)	2.272	1.360×10^{1}	$7.184\!\times\!10^{-1}$	$3.560\!\times\!10^{-2}$	1.114×10^{-1}	$6.620\times 10^{-1} 1.290\times 10^{-2}$		4.570×10^{-2}	9.355×10^{-1}
Chest Room	2.288	9.848	1.054	3.640×10^{-2}	6.590×10^{-2}	7.543×10^{-1}	1.300×10^{-2}	2.970×10^{-2}	1.195
Mammography Room	2.991×10^{1}	1.844×10^{2}	3.550×10^{-1}	2.539×10^{-1}	1.8411	3.924×10^{-1}	8.830×10^{-2}	7.526×10^{-1}	3.786×10^{-1}
Cardiac Angiography	2.354	1.494×10^{1}	$7.481\!\times\!10^{-1}$	3.710×10^{-2}	1.067×10^{-1}	5.733×10^{-1}	1.390×10^{-2}	4.640×10^{-2}	9.185×10^{-1}
Peripheral Angiography ^d	2.661	1.954×10^{1}	$5.094\!\times\!10^{-1}$	$4.219\times 10^{-2} 1.559\times 10^{-1} 4.472\times 10^{-1} 1.747\times 10^{-2}$	1.559×10^{-1}	4.472×10^{-1}	1.747×10^{-2}	6.422×10^{-2}	7.299×10^{-1}

Pontificia Universidade Católica do Rio Grande do Sul

O Reitor da Pontifícia Universidade Católica do Rio Grande do Sul, no uso das atribuições que lhe confere a Legislação e o Estatuto da Universidade, tendo em vista a conclusão e a respectiva colação de grau do Curso Superior de

FÍSICA

realizada no dia 29 de julho de 2001 por

JORGE LUÍS DE SOUZA PINTO

de agosto de 1965, em Porto Alegre, Estado do Rio Grande do Sul, manda passar-lhe brasileiro, portador da cédula de identidade nº 8037904045-SSP-RS, nascido a 10 o presente diploma de

BACHAREL EM FÍSICA

para que possa gozar de todos os direitos e prerrogativas legais.

Porto Alegre, 29 de julho de 2001.

VNorberto Francisco Rauch

Diplomado

Maria Emília Baltar Bernasiuk Diretor